=7 THE UNIVERSITY OF

MY . MELBOURNE

[T Capstone Project

COMP 30022 2025
Week 4 - Design

Overview of Lecture

Architecture Design

4+1 Architecture Model

Front-end Design

Low & high fidelity prototypes

= —7 [HE UNIVERSITY OF

Y. MELBOURNE

= —7 [HE UNIVERSITY OF

Y. MELBOURNE

Double Diamond Model (from design)

S o,
»

&%@\
L)
9*

RN
&
&0

&@\
L)
0*

Discover Develop

S
®
=
=]
®
&
B
:.
®
e

Design

THE UNIVERSITY OF

+ MELBOURNE

« A communication exercise so people can understand your code (and

thinking)
* No prescribed method

« Ul design (client involvement will vary)
« Plenty of templates: Figma, Canva, ...
« Wireframes, Low fidelity prototypes, ...

« High level architecture
« Detailed architecture

q)

Q)

=v'—7¢ THE UNIVERSITY OF

¥Y . MELBOURNE

High-level architecture

« For Web apps: A front-end, a back-end, and integration
« Front end concerns the user interface
« Back end concerns storing and retrieving information

4+1 Architecture Model

Common Model for documenting software architecture
Originally developed by Kruchten in 1995

Defines a set of views, relevant to different stakeholders
Makes it easier to understand a complex system

£ 9= THE UNIVERSITY OF

Y . MELBOURNE

End-user
Functionality

Logical View

Process View

Programmers
Software management

_— T
l QSCenarios) l
T— _—

_>

Integrators
Performance
Scalability

Development
View

Physical View

System engineers
Topology
Communications

Figure 1 — The “4+1” view model

=v'—7¢ THE UNIVERSITY OF

Y. MELBOURNE

Logical View

» Describes the functional requirements of the system
« Shows the components of the system and their relationships
* Includes domain, class and database diagrams

Domain Model

Term

Category

Property

Interaction List
(Associate)

Interaction List
(Customer)

Domain Model Semantics
Definition

Associates are categorised into concrete categories. The
categories, 'Family Members', 'Friends' and 'Favourites'
are added by default. More can be added by the user if
they wish.

Users have the option to create custom properties for
any of their contacts. Examples of properties may be a
favourite sport, food or city of residence.

A log of interactions with a particular associate.

All interactions of a user.

F logs

btle
dateTime
type
successRating
notes

lastName
email
password
contactsList
categoriesList
properuesiist
interactionsList

(¥ stores

0 *

description
dateAdded
categorieslist

© Contact

firstName
lastName
emaillist
phoneNumberList
dob

addresslist
propertyList

W stores

Database Model

Provides a visualisation of database
setup, e.g. with MongoDB

Consider authentication, etc...

self_contact

@ Interactions

utie - String
dateTime : Date
type : Stnng
successRating - Numbe
description | String

s

®

Users

firebaseUID Not Null - String

contactsiDLIst (FK)
categorylDList (FK)

_id (PK) Not Null - String

propertyKeylDList (FK) : PropertyKeys{}

Contacts{}
Categories{}

L

@ PropertyKeys

keyName : String
icon - String

_id (PX) Not Null : String

useriD (FK) Not Null

valuelDList (FK) Not Null : PropertyValues{}

String

L

® PropertyValues

valueName Not Null

String

_id (PK) Not Null : String
associatelDList (FK) Not Null : Associates{)
propertyKey (FK) Not Null : Strning

@ Con!aclts

A
@ Associates

description - String
dateAdded Not Null : Date

_id (PK) Not Null

contactiD (FK) Not Null : String
categorylDList (FK) : Categories{}
notelist (FK) : Note{}

String

first_name : String

last_name : String

dob : Date

emaillist . String{}

phoneNumberlist : Number{}
addressList . String{}

picture : Object

propertyValuelDList : PropenyValues{}

\\% L/ / / },

_id (PK) Not Null
associatelDList (FK) Not Null : Assoclates{}

String

R

I‘;;tes

Categories

title : String
date : Date
details : String

name . String
icon: String

_id (PK) Not Null : String

_id (PK) Not Null : String
userD (FK) Not Null : String
associatelD (FK) : String

_id (PK) Not Null : String
userD (FK) Not Null : String
associatelDList (FK) - Associates{}

B = LHE UNIVERSITY OF

Y . MELBOURNE

Process View

% cTelephaone cConnection - MailSystem hiailbox

Caller

Deals with dynamic aspects G S

of the system s |
Explains system processes u
and how they communicate

Focuses on runtime !

Caller hanas up

record

hangup ' L =ecreatess

behaviour of the system | =

Includes sequence state 5]
diagrams ! | | |

=v'—7¢ THE UNIVERSITY OF

¥Y . MELBOURNE

Development View

» Represented by package diagram
 Includes illustration from programmer’s perspective

« Can describe architecture goals and constraints, system diagrams, API
descriptions, etc...

12

Requirement

Authentication System should verify a
user is who they say they
are

Confidentiality System should ensure

sensitive information is
only accessible to those
who are authenticated

Data persistence System should ensure
data is saved and can be
accessed later

To protect sensitive data
from unauthorised access

To protect sensitive data
from being utilised
maliciously & maintain trust
from users

To Prevent data provided
from getting lost

THE UNIVERSITY OF
.2 MELBOURNE

Require users to log-in to correct account
before providing sensitive information
Use Firebase Authentication

Encrypt data in transit (HTTPS)
Use secure methods of storing information in
database

Use a database (e.g. MongoDB)

13

System Diagram

(" Presentation Layer

heroku 4 Application Layer

g Other External Services \

FaFirebase

(" Database Layer

) mongo

5

THE UNIVERSITY OF

./'\. MELBOURNE

14

Physical View

» Depicts the system from an engineer’s
point of view

« Concerned with the topology of software
components at the physical layer, as well
as the physical connection between these
components

» Represented using the deployment
diagram

O Alimi Deployment Diagram: Lucidchart

)

=0

Legend

Awtomatic Frocess —— =

L) Deployment Pipeline | Lucidchart

Manugl Process - —

Github Repa

Local branch _

Pull Reguesi | PR approved and | Main branch
merged to man

Heroku <reates

Review App Instance
A

Changes to

main Braech
~ wriggers deplayment
to staging app

-

Heroku Staging App

1

Deploy staging app 1o
~ production ape through . e
ek decision

Haroku Production App

%

==~ THE UNIVERSITY OF
2¥e# MELBOURNE

Scenario / Use Case View

Register book
loan
Register book \
return ie=n. - i
/
Query book /
availability
Add new book

Library System

« Show a subset of important
use cases

* Represented by use case
d|ag rams Library user

Librarian

MME design

o
= mg_iz_
’Q@ﬂ
- @_E - ﬂ
S B & EE
-3

=7 THE UNIVERSITY OF

@ . MELBOURNE

19

THE UNIVERSITY OF

Y. MELBOURNE

FRONTEND DESIGN

20

B = LHE UNIVERSITY OF

Y . MELBOURNE

Low Fidelity Prototypes

Quick and easy way to make sure interface —~ ;
is fit-for-purpose

Only includes basic aspects of visual é § §

X X
design (e.g. shapes of elements) & >< >< ><
Only includes key content elements
No final colours, visual elements, etc... :X 2<
Test interactions with users | e

Image: Figma.com

21

=7 THE UNIVERSITY OF
=% MELBOURNE

High Fidelity Prototypes

Appear as similar as possible
to actual product

Develop after you have a
more solid understanding

Include realistic content,
visual design, colours, etc...

Realistic interactions

Image: https://medium.com/7ninjas/low-fidelity-vs-high-fidelity-prototypes-903a7befaaSa

22

£ 9= THE UNIVERSITY OF

Y . MELBOURNE

Design in COMP30022

Think about who you need to communicate with

Think about what needs to be documented

Review important documents with your team

Use them to identify flaws in your design

Keep them up to date

Tools like Draw.|O or MS Visio are options for architecture
Tools like Figma, Marvel, Canva are options for prototyping
Discuss with your supervisor

23

THE UNIVERSITY OF

83 . MELBOURNE

Continuing design

« Past projects
« We no longer write a 10 page project report
« Some things are good in the project

« (Great resource: hittps://cis-
projects.qgithub.io/project_based course notes/topics/devsprint.html

24

https://cis-projects.github.io/project_based_course_notes/topics/devsprint.html
https://cis-projects.github.io/project_based_course_notes/topics/devsprint.html
https://cis-projects.github.io/project_based_course_notes/topics/devsprint.html

	Slide 1: IT Capstone Project COMP 30022 2025 Week 4 - Design
	Slide 2: Overview of Lecture
	Slide 3: Double Diamond Model (from design)
	Slide 4: Design
	Slide 5: High-level architecture
	Slide 6: 4+1 Architecture Model
	Slide 7
	Slide 8: Logical View
	Slide 9: Domain Model
	Slide 10: Database Model
	Slide 11: Process View
	Slide 12: Development View
	Slide 13: Architecture Goals & Constraints
	Slide 14: System Diagram
	Slide 15: Physical View
	Slide 16
	Slide 17: Scenario / Use Case View
	Slide 18: From last year
	Slide 19: MME design
	Slide 20: Frontend Design
	Slide 21: Low Fidelity Prototypes
	Slide 22: High Fidelity Prototypes
	Slide 23: Design in COMP30022
	Slide 24: Continuing design

