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Overview of Lecture

Architecture Design

4+1 Architecture Model

Front-end Design

Low & high fidelity prototypes
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Double Diamond Model (from design)
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Design
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« A communication exercise so people can understand your code (and

thinking)
* No prescribed method

« Ul design (client involvement will vary)
« Plenty of templates: Figma, Canva, ...
« Wireframes, Low fidelity prototypes, ...

« High level architecture
« Detailed architecture

q)
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High-level architecture

« For Web apps: A front-end, a back-end, and integration
« Front end concerns the user interface
« Back end concerns storing and retrieving information



4+1 Architecture Model

Common Model for documenting software architecture
Originally developed by Kruchten in 1995

Defines a set of views, relevant to different stakeholders
Makes it easier to understand a complex system
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Figure 1 — The “4+1” view model
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Logical View

» Describes the functional requirements of the system
« Shows the components of the system and their relationships
* Includes domain, class and database diagrams



Domain Model

Term

Category

Property

Interaction List
(Associate)

Interaction List
(Customer)

Domain Model Semantics
Definition

Associates are categorised into concrete categories. The
categories, 'Family Members', 'Friends' and 'Favourites'
are added by default. More can be added by the user if
they wish.

Users have the option to create custom properties for
any of their contacts. Examples of properties may be a
favourite sport, food or city of residence.

A log of interactions with a particular associate.

All interactions of a user.

F logs

btle
dateTime
type
successRating
notes

lastName
email
password
contactsList
categoriesList
properuesiist
interactionsList

(¥ stores

0 *

description
dateAdded
categorieslist

© Contact

firstName
lastName
emaillist
phoneNumberList
dob

addresslist
propertyList

W stores



Database Model

Provides a visualisation of database
setup, e.g. with MongoDB

Consider authentication, etc...

self_contact

@ Interactions

utie - String
dateTime : Date
type : Stnng
successRating - Numbe
description | String

s

®

Users

firebaseUID Not Null - String

contactsiDLIst (FK)
categorylDList (FK)

_id (PK) Not Null - String

propertyKeylDList (FK) : PropertyKeys{}

Contacts{}
Categories{}

L

@ PropertyKeys

keyName : String
icon - String

_id (PX) Not Null : String

useriD (FK) Not Null

valuelDList (FK) Not Null : PropertyValues{}

String

L

® PropertyValues

valueName Not Null

String

_id (PK) Not Null : String
associatelDList (FK) Not Null : Associates{)
propertyKey (FK) Not Null : Strning

@ Con!aclts

A
@ Associates

description - String
dateAdded Not Null : Date

_id (PK) Not Null

contactiD (FK) Not Null : String
categorylDList (FK) : Categories{}
notelist (FK) : Note{}

String

first_name : String

last_name : String

dob : Date

emaillist . String{}

phoneNumberlist : Number{}
addressList . String{}

picture : Object

propertyValuelDList : PropenyValues{}

\\% L/ / / },

_id (PK) Not Null
associatelDList (FK) Not Null : Assoclates{}

String

R

I‘;;tes

Categories

title : String
date : Date
details : String

name . String
icon: String

_id (PK) Not Null : String

_id (PK) Not Null : String
userD (FK) Not Null : String
associatelD (FK) : String

_id (PK) Not Null : String
userD (FK) Not Null : String
associatelDList (FK) - Associates{}
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Process View

% cTelephaone cConnection - MailSystem hiailbox

Caller

Deals with dynamic aspects G S

of the system s |
Explains system processes u
and how they communicate

Focuses on runtime !

Caller hanas up

record

hangup ' L =ecreatess

behaviour of the system | =

Includes sequence state 5 ]
diagrams ! | | |
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Development View

» Represented by package diagram
 Includes illustration from programmer’s perspective

« Can describe architecture goals and constraints, system diagrams, API
descriptions, etc...

12



Requirement

Authentication System should verify a
user is who they say they
are

Confidentiality System should ensure

sensitive information is
only accessible to those
who are authenticated

Data persistence System should ensure
data is saved and can be
accessed later

To protect sensitive data
from unauthorised access

To protect sensitive data
from being utilised
maliciously & maintain trust
from users

To Prevent data provided
from getting lost
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.2 MELBOURNE

Require users to log-in to correct account
before providing sensitive information
Use Firebase Authentication

Encrypt data in transit (HTTPS)
Use secure methods of storing information in
database

Use a database (e.g. MongoDB)

13



System Diagram

(" Presentation Layer

heroku 4 Application Layer

g Other External Services \

FaFirebase

(" Database Layer

) mongo
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Physical View

» Depicts the system from an engineer’s
point of view

« Concerned with the topology of software
components at the physical layer, as well
as the physical connection between these
components

» Represented using the deployment
diagram

O Alimi Deployment Diagram: Lucidchart

)
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Legend

Awtomatic Frocess —— =

L) Deployment Pipeline | Lucidchart
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Scenario / Use Case View

Register book
loan
Register book \
return ie=n. - i
/
Query book /
availability
Add new book

Library System

« Show a subset of important
use cases

* Represented by use case
d|ag rams Library user

Librarian







MME design
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FRONTEND DESIGN
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Low Fidelity Prototypes

Quick and easy way to make sure interface —~ ;
is fit-for-purpose

Only includes basic aspects of visual é § §

X X
design (e.g. shapes of elements) & >< >< ><
Only includes key content elements
No final colours, visual elements, etc... :X 2<
Test interactions with users | e

Image: Figma.com

21
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High Fidelity Prototypes

Appear as similar as possible
to actual product

Develop after you have a
more solid understanding

Include realistic content,
visual design, colours, etc...

Realistic interactions

Image: https://medium.com/7ninjas/low-fidelity-vs-high-fidelity-prototypes-903a7befaaSa
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Design in COMP30022

Think about who you need to communicate with

Think about what needs to be documented

Review important documents with your team

Use them to identify flaws in your design

Keep them up to date

Tools like Draw.|O or MS Visio are options for architecture
Tools like Figma, Marvel, Canva are options for prototyping
Discuss with your supervisor

23
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Continuing design

« Past projects
« We no longer write a 10 page project report
« Some things are good in the project

« (Great resource: hittps://cis-
projects.qgithub.io/project_based course notes/topics/devsprint.html

24


https://cis-projects.github.io/project_based_course_notes/topics/devsprint.html
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