
Requirements Document - “ICN Navigator”

1.1. High Level Business Requirements

Classically, directories at ICN have been produced as PDF catalogues of
capability data for each sector, where company capabilities are mapped against
them.

An online dynamic
directories platform
would eliminate the
need for time-bound
snapshots of data
and integrate with
ICN databases to
fetch and display
up-to-date
capability data for
each sector in real
time. This ensures
the latest, most
accurate records of
capability are always to
be displayed on an easy-to-use digital platform.

This would be a filtered view of capability featured on a comprehensive map-
based visualisation of companies, showcasing their locations and detailed
profiles, including key capabilities. This functionality simplifies the discovery of
relevant businesses and enhances visibility.

1.2. High Level Technical Requirements

The ICN Navigator platform should be built using modern, widely supported
technologies that are easy to learn, flexible, and suitable for deployment on both
web and mobile devices. Key technical requirements include:

• Cross-Platform Development

o The platform should work on web browsers and mobile devices (iOS
and Android) without building separate apps from scratch.

o A modern JavaScript framework such as Vue.js (possibly combined
with tools like Ionic or Capacitor) or React (with React Native) is
recommended for cross-platform compatibility.

• Interactive Map Integration

o The platform should include map functionality to display company
locations and capabilities.

o Open-source libraries like Leaflet or Mapbox GL JS can be used for
adding maps to the web interface.

• API Connectivity

o The frontend should connect to backend services through simple
APIs (e.g. REST).

o Existing data from ICN directories should be accessible via these
APIs.

• Modern UI & Responsive Design

o The user interface should be clean, easy to use, and adapt well to
different screen sizes (desktop, tablet, mobile).

• Simple Security Measures

o Basic user authentication should be implemented if the system
stores sensitive information.

o All communication should happen over secure connections (HTTPS).

• Ease of Deployment

o The system should be deployable to common hosting platforms like
Vercel, Netlify, or simple cloud servers.

o It should not rely on complex enterprise infrastructure.

• Maintainability & Collaboration

o Code should be written clearly and organized in modules or
components.

o Version control (e.g. Git) should be used for collaboration.

The overall goal is a lightweight, modern application that’s easy to develop,
maintain, and extend in future student projects or professional builds.

1.3. Project Phases

Item Scope

1. Discovery (for scope)

Define foundation and validate feasibility:
- Requirement workshops, roadmap development
- Lightweight prototype development with real-time data
integration and mapping.

2. MVP Development
(Agile)

Core platform functionalities:
- MVP features - data integration, directories, mapping.
- Incremental delivery of enhanced required functionalities.

3. Testing Ensure reliability and deliver the live platform:

Existing directory capability data will be securely migrated and integrated into the
new platform, ensuring continuity and data integrity. A user-friendly interface will
provide a seamless access to this centralised resource, streamlining the
experience for all users.

- Testing (unit, integration, UAT),
- Performance assessment,
- Staged deployment.
Documentation and support setup (service facilities) preparation.

4. Deployment

The live platform’s launch with:
- Staged deployment to production,
- Stakeholder validation
Basic support setup (documentation, customer service) launch.

